Level Lowering, Frey Curves and Fermat's Last Theorem

Samir Siksek

University of Warwick

8 September 2014

Facts about Newforms I

- 0 $N \ge 1$ is an integer called the level.
- ② There are finitely many newforms of level N (and weight 2).
- There are algorithms implemented in SAGE and Magma for computing the newforms of level N.
- $oldsymbol{0}$ A newform is given by its q-expansion

$$f=q+\sum_{n\geq 2}c_nq^n.$$

Facts about Newforms II

 $oldsymbol{0}$ A newform is given by its q-expansion

$$f=q+\sum_{n\geq 2}c_nq^n.$$

- $\mathbf{0}$ $c_i \in \mathcal{O}_K$.
- lacktriangledown If ℓ is a prime then

$$|\sigma(c_\ell)| \le 2\sqrt{\ell}$$
, for all embeddings $\sigma: K \hookrightarrow \mathbb{R}$.

Theorem

There are no newforms at levels

$$1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60$$
.

Example

The newforms at a fixed level N can be computed using the modular symbols algorithm (Cremona, Stein, ...) implemented in Magma and SAGE. For example, the newforms at level 110 are

$$f_1 = q - q^2 + q^3 + q^4 - q^5 - q^6 + 5q^7 + \cdots,$$

$$f_2 = q + q^2 + q^3 + q^4 - q^5 + q^6 - q^7 + \cdots,$$

$$f_3 = q + q^2 - q^3 + q^4 + q^5 - q^6 + 3q^7 + \cdots,$$

$$f_4 = q - q^2 + \theta q^3 + q^4 + q^5 - \theta q^6 - \theta q^7 + \cdots.$$

 f_1 , f_2 , f_3 have coefficients in \mathbb{Z} . f_4 has coefficients in $\mathbb{Z}[\theta]$ where $\theta = (-1 + \sqrt{33})/2$. There is a fifth newform at level 110 which is the conjugate of f_4 .

 f_1 , f_2 , f_3 are **rational** newforms, whereas f_4 is irrational.

'arises from'

Definition

Let

- \bullet E be an elliptic curve of conductor N,
- $f = q + \sum_{n \ge 2} c_n q^n$ be a newform of level N',
- $K = \mathbb{Q}(c_2, c_3, \ldots)$,
- \mathcal{O}_K the ring of integers of K,
- p a prime.

We say that E arises from f mod p and write $E \sim_p f$ if there is some prime ideal $\mathfrak{P} \mid p$ of \mathcal{O}_K such that for all primes ℓ

- (i) if $\ell \nmid pNN'$ then $a_{\ell}(E) \equiv c_{\ell} \pmod{\mathfrak{P}}$, and
- (ii) if $\ell \nmid pN'$ and $\ell \mid N$ then $\ell+1 \equiv \pm c_{\ell} \pmod{\mathfrak{P}}$.

If f is rational then it corresponds to an elliptic curve E'. In which case we write $E \sim_p E'$.

Ribet's Level Lowering Theorem

Let

- E/\mathbb{Q} be an elliptic curve,
- ② $\Delta = \Delta_{\min}$ be the discriminant of a minimal model of E,
- \odot N be the conductor of E,

$$N_p = N \Big/ \prod_{\substack{q || N, \ p \,|\, \mathsf{ord}_q(\Delta)}} q.$$

Theorem (A simplified special case of Ribet's Theorem)

- Let $p \ge 3$ be a prime.
- Suppose E does not have any p-isogenies.
- Suppose E is modular.

Then there exists a newform f of level N_p such that $E \sim_p f$.

An Example

$$E: y^2 = x^3 - x^2 - 77x + 330$$
 132B1

Then

$$\Delta_{\min} = 2^4 \times 3^{10} \times 11, \qquad \textit{N} = 2^2 \times 3 \times 11. \label{eq:deltamin}$$

The only isogeny the curve E has is a 2-isogeny. Recall

$$N_p = N \left/ \prod_{\substack{q || N, \ p \,|\, \mathrm{ord}_q(\Delta)}} q.
ight.$$

So

$$N_5 = \frac{2^2 \times 3 \times 11}{3} = 44, \qquad N_p = 132 \text{ for } p \neq 5.$$

Example (continued)

E:
$$y^2 = x^3 - x^2 - 77x + 330$$
 only 2-isogenies $N_5 = \frac{2^2 \times 3 \times 11}{3} = 44$, $N_p = 132$ for $p \neq 5$.

Apply Ribet's Theorem with p = 5.

There is only one newform at level 44 which corresponds to the elliptic curve

$$F: y^2 = x^3 + x^2 + 3x - 1$$
 44A1.

Thus $E \sim_5 F$.

ℓ	2	3	5	7	11	13	17	19
$a_{\ell}(E)$	0	-1	2	2	-1	6	-4	-2
$a_{\ell}(F)$	0	1	-3	2	-1	-4	6	8

Fermat's Last Theorem

Suppose a, b, c are integers, $p \ge 3$ prime satisfying

$$a^p + b^p + c^p = 0,$$
 $abc \neq 0.$

Without loss of generality

$$gcd(a, b, c) = 1,$$
 $2 \mid b,$ $a^p \equiv -1 \pmod{4}.$

Let

$$E : Y^2 = X(X - a^p)(X + b^p),$$
 Frey curve.

Then

$$\Delta_{\min} = \frac{a^{2\rho}b^{2\rho}c^{2\rho}}{2^8}, \qquad \textit{N} = \prod_{\ell\mid abc}\ell\,.$$

Absence of Isogenies

Theorem (Mazur)

Let E/\mathbb{Q} be an elliptic curve, and p a prime satisfying at least one of the following conditions:

- p > 163,
- or $p \ge 5$ and $\#E(\mathbb{Q})[2] = 4$ and the conductor of E is squarefree.

Then E does not have p-isogenies.

$$E : Y^2 = X(X - a^p)(X + b^p),$$
 Frey curve.

Then

$$\Delta_{\min} = \frac{a^{2p}b^{2p}c^{2p}}{2^8}, \qquad N = \prod_{\ell \mid abc} \ell.$$

By Mazur, for $p \ge 5$, the Frey curve does not have p-isogenies.

FLT (continued)

$$\Delta_{\min} = rac{a^{2p}b^{2p}c^{2p}}{2^8}, \qquad N = \prod_{\ell \mid abc}\ell \,.$$
 $N_p = N \left/ \prod_{\substack{q \mid N, \ p \mid \mathsf{ord}_q(\Delta)}} q
ight. \Longrightarrow \qquad N_p = 2.$

Theorem (Ribet)

- Let $p \ge 3$ be a prime.
- Suppose E does not have any p-isogenies.
- Suppose E is modular.

Then there exists a newform f of level N_p such that $E \sim_p f$.

By Ribet, there is a newform f of level 2 such that $E \sim_p f$.

FLT (continued)

By Ribet, there is a newform f of level 2 such that such that $E \sim_p f$.

Theorem

There are no newforms at levels

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60.

Contradiction!

Frey Curves

Given a Diophantine equation, suppose it has a solution, and associate with it an elliptic curve E called a **Frey curve**, if possible. The key properties of the Frey curve are

- The coefficients of the elliptic curve somehow depend on the solution to the Diophantine equation.
- The minimal discriminant can be written in the form $\Delta = C \cdot D^p$ where D depends on the solution. The factor C does not depend on the solutions but only on the Diophantine equation.
- E has multiplicative reduction at the primes dividing D. (i.e. if $p \mid D$ then $p \mid\mid N$).

We conclude

- The conductor N of E is divisible by primes dividing C and D (depends on the equation and the solution).
- ② The primes dividing D can be removed when we write down N_p (depends only on the equation).
- **3** There are only finitely many possibilities for N_p .
- **3** For each N_p , there are only finitely many newforms f of level N_p .

Frey Curve

- The conductor N of E is divisible by primes dividing C and D (depends on the equation and the solution).
- ② The primes dividing D can be removed when we write down N_p (depends only on the equation).
- **1** There are only finitely many possibilities for N_p .
- For each N_p , there are only finitely many newforms f of level N_p .

Applying Wiles, Ribet and Mazur, we have $E \sim_p f$ for one of finitely many f.

What can we learn about the solution to the Diophantine equation from knowing the finitely many f?

Frey Curve

- The conductor N of E is divisible by primes dividing C and D (depends on the equation and the solution).
- ② The primes dividing D can be removed when we write down N_p (depends only on the equation).
- **1** There are only finitely many possibilities for N_p .
- **3** For each N_p , there are only finitely many newforms f of level N_p .

Applying Wiles, Ribet and Mazur, we have $E \sim_p f$ for one of finitely many f.

What can we learn about the solution to the Diophantine equation from knowing the finitely many f?

Find out tomorrow!