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Recap: The Modularity Theorem

We call a newform rational if all its coefficients are in Q, otherwise it is
irrational.

Theorem (Modularity Theorem)

There is a bijection

rational newforms f of level N ←→ isogeny classes of elliptic

curves of conductor N.

If f = q +
∑

n≥2 cnq
n corresponds to E/Q then for all ` - N

c` = a`(E ), a`(E ) = ` + 1−#E (F`).
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Recap: ‘arises from’

Definition

Let

E be an elliptic curve of conductor N,

f = q +
∑

n≥2 cnq
n be a newform of level N ′,

K = Q(c2, c3, . . .),

OK the ring of integers of K ,

p a prime.

We say that E arises from f mod p and write E ∼p f if there is some
prime ideal P | p of OK such that for all primes `

(i) if ` - pNN ′ then a`(E ) ≡ c` (mod P), and

(ii) if ` - pN ′ and ` || N then ` + 1 ≡ ±c` (mod P).

3 / 14



Recap: Ribet’s Level Lowering Theorem

Let

1 E/Q be an elliptic curve,

2 ∆ = ∆min be the discriminant of a minimal model of E ,

3 N be the conductor of E ,

4 for a prime p let

Np = N
/ ∏

q||N,
p | ordq(∆)

q.

Theorem (Ribet’s Theorem)

Let p ≥ 3 be a prime.

Suppose E does not have any p-isogenies.

Suppose E is modular.

Then there exists a newform f of level Np such that E ∼p f .
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Frey Curves
Given a Diophantine equation, suppose it has a solution, and associate
with it an elliptic curve E called a Frey curve, if possible. The key
properties of the Frey curve are

The coefficients of the elliptic curve somehow depend on the solution
to the Diophantine equation.
The minimal discriminant can be written in the form ∆ = C · Dp

where D depends on the solution. The factor C does not depend
on the solutions but only on the Diophantine equation.
E has multiplicative reduction at the primes dividing D. (i.e. if p | D
then p || N).

We conclude
1 The conductor N of E is divisible by primes dividing C and D

(depends on the equation and the solution).
2 The primes dividing D can be removed when we write down Np

(depends only on the equation).
3 There are only finitely many possibilities for Np.
4 For each Np, there are only finitely many newforms f of level Np.
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Frey Curve

1 The conductor N of E is divisible by primes dividing C and D
(depends on the equation and the solution).

2 The primes dividing D can be removed when we write down Np

(depends only on the equation).

3 There are only finitely many possibilities for Np.

4 For each Np, there are only finitely many newforms f of level Np.

Applying Wiles, Ribet and Mazur, we have E ∼p f for one of finitely many
f .

What can we learn about the solution to the Diophantine equation
from knowing the finitely many f ?
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The Diophantine Equation ap + Lrbp + cp = 0
Let L be an odd prime number. Consider

ap + Lrbp + cp = 0, abc 6= 0, p ≥ 5 is prime.

We assume that

a, b, c are coprime, 0 < r < p.

Let A, B, C be a permutation of ap, Lrbp, cp such that

2 | B, A ≡ −1 (mod 4).

Let E be the elliptic curve

E : y2 = x(x − A)(x + B).

Then

∆min =
L2r (abc)2p

28
, N =

∏
`|Labc

`.
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∆min =
L2r (abc)2p

28
, N =

∏
q|Labc

q.

Np = N
/ ∏

q||N,
p | ordq(∆)

q = 2L.
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Ribet’s Theorem =⇒ there is a newform f of level Np = 2L such that
E ∼p f .

Theorem

There are no newforms at levels

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60 .

Therefore the equation

ap + Lrbp + cp = 0, abc 6= 0, p ≥ 5 is prime.

has no solutions for L = 3, 5, 11.
What can we do for other values of L? Say L = 19, so Np = 38.
There are two newforms of level 38:

f1 = q − q2 + q3 + q4 − q6 − q7 + · · ·
f2 = q + q2 − q3 + q4 − 4q5 − q6 + 3q7 + · · ·

No contradiction yet.
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Bounding the Exponent

E : y2 = x(x − A)(x + B).

N =
∏

`|19abc

`, Np = 38.

f1 = q − q2 + q3 + q4 − q6 − q7 + · · ·
f2 = q + q2 − q3 + q4 − 4q5 − q6 + 3q7 + · · ·

E ∼p f = q +
∑

n≥2 cnq
n, where f is one of f1, f2. Suppose ` - 38.

(i) If ` - abc then a`(E ) ≡ c` (mod p).

(ii) If ` | abc then ` + 1 ≡ ±c` (mod p).
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What do we know about a`(E )?

E : y2 = x(x − A)(x + B)

has conductor N. Suppose ` - N. Then

−2
√
` ≤ a`(E ) ≤ 2

√
` Hasse–Weil Bound.

Also, 4 | #E (F`). But

` + 1− a`(E ) = #E (F`) ≡ 0 (mod 4).

So
` + 1 ≡ a`(E ) (mod 4).

Conclusion: If ` - N then

a`(E ) ∈ S` := {a ∈ Z : −2
√
` ≤ a ≤ 2

√
`, ` + 1 ≡ a (mod 4)}.
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N =
∏

`|19abc

`, Np = 38.

E ∼p f = q +
∑

n≥2 cnq
n, where f is one of f1, f2. Suppose ` - 38.

(i) If ` - abc then a`(E ) ≡ c` (mod p).

(ii) If ` | abc then ` + 1 ≡ ±c` (mod p).

If ` - abc then

a`(E ) ∈ S` := {a ∈ Z : −2
√
` ≤ a ≤ 2

√
`, ` + 1 ≡ a (mod 4)}.

So p | B`(f ) where

B`(f ) = (` + 1− c`)(` + 1 + c`) ·
∏
a∈S`

(a− c`).
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S` := {a ∈ Z : −2
√
` ≤ a ≤ 2

√
`, ` + 1 ≡ a (mod 4)}.

So p | B`(f ) where

B`(f ) = (` + 1− c`)(` + 1 + c`) ·
∏
a∈S`

(a− c`),

and f = f1 or f2.

f1 = q − q2 + q3 + q4 − q6 − q7 + · · ·
f2 = q + q2 − q3 + q4 − 4q5 − q6 + 3q7 + · · ·

Letting ` = 3, we have

B3(f1) = −15, B3(f2) = 15.

So p = 5.
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Mazur

Using similar ideas, Mazur proved the following.

Theorem (Mazur)

Let L be an odd prime that is neither a Fermat prime nor a Mersenne
prime. Then there is a positive CL such that the following holds: the only
solutions to the equation

ap + Lrbp + cp = 0

with p > CL satisfy abc = 0.

For details of the proof, see the notes.
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