The Diophantine Equation $x^p + L^r y^p + z^p = 0$

Samir Siksek

University of Warwick

9 September 2014

Recap: The Modularity Theorem

We call a newform **rational** if all its coefficients are in \mathbb{Q} , otherwise it is **irrational**.

Theorem (Modularity Theorem)

There is a bijection

rational newforms f of level $N \longleftrightarrow$ isogeny classes of elliptic curves of conductor N.

If
$$f=q+\sum_{n\geq 2}c_nq^n$$
 corresponds to E/\mathbb{Q} then for all $\ell\nmid N$

$$c_{\ell}=a_{\ell}(E), \qquad a_{\ell}(E)=\ell+1-\#E(\mathbb{F}_{\ell}).$$

Recap: 'arises from'

Definition

Let

- E be an elliptic curve of conductor N,
- $f = q + \sum_{n>2} c_n q^n$ be a newform of level N',
- $\bullet \ \ K=\mathbb{Q}(c_2,c_3,\ldots),$
- \mathcal{O}_K the ring of integers of K,
- p a prime.

We say that E arises from f mod p and write $E \sim_p f$ if there is some prime ideal $\mathfrak{P} \mid p$ of \mathcal{O}_K such that for all primes ℓ

- (i) if $\ell \nmid pNN'$ then $a_{\ell}(E) \equiv c_{\ell} \pmod{\mathfrak{P}}$, and
- (ii) if $\ell \nmid pN'$ and $\ell \mid \mid N$ then $\ell + 1 \equiv \pm c_{\ell} \pmod{\mathfrak{P}}$.

Recap: Ribet's Level Lowering Theorem

Let

- E/\mathbb{Q} be an elliptic curve,
- ② $\Delta = \Delta_{\min}$ be the discriminant of a minimal model of E,
- 3 N be the conductor of E,

$$N_p = N \Big/ \prod_{\substack{q || N, \ p \,|\, \mathsf{ord}_q(\Delta)}} q.$$

Theorem (Ribet's Theorem)

- Let $p \ge 3$ be a prime.
- Suppose E does not have any p-isogenies.
- Suppose E is modular.

Then there exists a newform f of level N_p such that $E \sim_p f$.

Frey Curves

Given a Diophantine equation, suppose it has a solution, and associate with it an elliptic curve E called a **Frey curve**, if possible. The key properties of the Frey curve are

- The coefficients of the elliptic curve somehow depend on the solution to the Diophantine equation.
- The minimal discriminant can be written in the form $\Delta = C \cdot D^p$ where D depends on the solution. The factor C does not depend on the solutions but only on the Diophantine equation.
- E has multiplicative reduction at the primes dividing D. (i.e. if $p \mid D$ then $p \mid\mid N$).

We conclude

- The conductor N of E is divisible by primes dividing C and D (depends on the equation and the solution).
- ② The primes dividing D can be removed when we write down N_p (depends only on the equation).
- **3** There are only finitely many possibilities for N_p .
- **3** For each N_p , there are only finitely many newforms f of level N_p .

Frey Curve

- The conductor N of E is divisible by primes dividing C and D (depends on the equation and the solution).
- ② The primes dividing D can be removed when we write down N_p (depends only on the equation).
- **1** There are only finitely many possibilities for N_p .
- **3** For each N_p , there are only finitely many newforms f of level N_p .

Applying Wiles, Ribet and Mazur, we have $E \sim_p f$ for one of finitely many f.

What can we learn about the solution to the Diophantine equation from knowing the finitely many f?

The Diophantine Equation $a^p + L^r b^p + c^p = 0$

Let L be an odd prime number. Consider

$$a^p + L^r b^p + c^p = 0$$
, $abc \neq 0$, $p \geq 5$ is prime.

We assume that

a, b, c are coprime,
$$0 < r < p$$
.

Let A, B, C be a permutation of a^p , L^rb^p , c^p such that

$$2 \mid B$$
, $A \equiv -1 \pmod{4}$.

Let *E* be the elliptic curve

$$E : y^2 = x(x - A)(x + B).$$

Then

$$\Delta_{\min} = \frac{L^{2r}(abc)^{2p}}{2^8}, \qquad N = \prod_{\ell \mid l, abc} \ell.$$

$$egin{aligned} \Delta_{\min} &= rac{L^{2r}(abc)^{2p}}{2^8}, \qquad N = \prod_{q \mid Labc} q. \ N_p &= N \left/ \prod_{\substack{q \mid \mid N, \ p \mid \mathsf{ord}_q(\Delta)}} q = 2L. \end{aligned} \end{aligned}$$

Ribet's Theorem \implies there is a newform f of level $N_p=2L$ such that $E\sim_p f$.

Theorem

There are no newforms at levels

Therefore the equation

$$a^p + L^r b^p + c^p = 0$$
, $abc \neq 0$, $p \geq 5$ is prime.

has no solutions for L = 3, 5, 11.

What can we do for other values of L? Say L=19, so $N_p=38$.

There are two newforms of level 38:

$$f_1 = q - q^2 + q^3 + q^4 - q^6 - q^7 + \cdots$$

 $f_2 = q + q^2 - q^3 + q^4 - 4q^5 - q^6 + 3q^7 + \cdots$

No contradiction yet.

Bounding the Exponent

E:
$$y^2 = x(x - A)(x + B)$$
.
 $N = \prod_{\ell | 19abc} \ell$, $N_p = 38$.

$$f_1 = q - q^2 + q^3 + q^4 - q^6 - q^7 + \cdots$$

 $f_2 = q + q^2 - q^3 + q^4 - 4q^5 - q^6 + 3q^7 + \cdots$

 $E \sim_p f = q + \sum_{n \geq 2} c_n q^n$, where f is one of f_1 , f_2 . Suppose $\ell \nmid 38$.

- (i) If $\ell \nmid abc$ then $a_{\ell}(E) \equiv c_{\ell} \pmod{p}$.
- (ii) If $\ell \mid abc$ then $\ell + 1 \equiv \pm c_{\ell} \pmod{p}$.

What do we know about $a_{\ell}(E)$?

$$E : y^2 = x(x - A)(x + B)$$

has conductor N. Suppose $\ell \nmid N$. Then

$$-2\sqrt{\ell} \le a_{\ell}(E) \le 2\sqrt{\ell}$$
 Hasse–Weil Bound.

Also, $4 \mid \#E(\mathbb{F}_{\ell})$. But

$$\ell+1-a_{\ell}(E)=\#E(\mathbb{F}_{\ell})\equiv 0\pmod{4}.$$

So

$$\ell+1\equiv a_\ell(E)\pmod{4}.$$

Conclusion: If $\ell \nmid N$ then

$$a_{\ell}(E) \in \mathcal{S}_{\ell} := \{ a \in \mathbb{Z} : -2\sqrt{\ell} \le a \le 2\sqrt{\ell}, \qquad \ell + 1 \equiv a \pmod{4} \}.$$

$$N = \prod_{\ell \mid 19abc} \ell, \qquad N_{\rho} = 38.$$

 $E \sim_p f = q + \sum_{n \geq 2} c_n q^n$, where f is one of f_1 , f_2 . Suppose $\ell \nmid 38$.

- (i) If $\ell \nmid abc$ then $a_{\ell}(E) \equiv c_{\ell} \pmod{p}$.
- (ii) If $\ell \mid abc$ then $\ell + 1 \equiv \pm c_{\ell} \pmod{p}$.

If $\ell \nmid abc$ then

$$a_\ell(E) \in \mathcal{S}_\ell := \{ a \in \mathbb{Z} \ : \ -2\sqrt{\ell} \leq a \leq 2\sqrt{\ell}, \qquad \ell+1 \equiv a \pmod{4} \}.$$

So $p \mid B_{\ell}(f)$ where

$$B_{\ell}(f)=(\ell+1-c_{\ell})(\ell+1+c_{\ell})\cdot\prod_{a\in S_{\ell}}(a-c_{\ell}).$$

$$S_{\ell} := \{ a \in \mathbb{Z} : -2\sqrt{\ell} \le a \le 2\sqrt{\ell}, \qquad \ell + 1 \equiv a \pmod{4} \}.$$

So $p \mid B_{\ell}(f)$ where

$$B_\ell(f) = (\ell+1-c_\ell)(\ell+1+c_\ell) \cdot \prod_{a \in S_\ell} (a-c_\ell),$$

and $f = f_1$ or f_2 .

$$f_1 = q - q^2 + q^3 + q^4 - q^6 - q^7 + \cdots$$

$$f_2 = q + q^2 - q^3 + q^4 - 4q^5 - q^6 + 3q^7 + \cdots$$

Letting $\ell = 3$, we have

$$B_3(f_1) = -15, \qquad B_3(f_2) = 15.$$

So p = 5.

Mazur

Using similar ideas, Mazur proved the following.

Theorem (Mazur)

Let L be an odd prime that is neither a Fermat prime nor a Mersenne prime. Then there is a positive C_L such that the following holds: the only solutions to the equation

$$a^p + L^r b^p + c^p = 0$$

with $p > C_L$ satisfy abc = 0.

For details of the proof, see the notes.