DIVISIBILTY PROPERTIES OF GCD VE LCM MATRICES

ERCAN ALTINIŞIK, MEHMET YILDIZ

ABSTRACT

Let a, b and n be positive integers and let $S = \{x_1, x_2, \ldots, x_n\}$ be a set of distinct positive integers. The $n \times n$ matrix $(S_f) = (f((x_i, x_j)))$, having f evaluated at the greatest common divisor (x_i, x_j) of x_i and x_j as its ij-entry, is called the GCD matrix associated with f on the set S. Similarly, the $n \times n$ matrix $[S_f] =$ $(f([x_i, x_j]))$ is called the LCM matrix associated with f on S. If f = I, the identity function on \mathbb{Z}^+ , we have the classical GCD matrix (S) and the classical LCM matrix [S]. If $f = N^a$, the power function, we have the a-th power GCD matrix (S^a) and a-th the power LCM matrix $[S^a]$.

Let f be an integer valued arithmetical function. It is said that the matrix (S_f) divides the matrix $[S_f]$ in $M(n, \mathbb{Z})$ and denoted by $(S_f) | [S_f]$ if there exists an $n \times n$ matrix $B \in M(n, \mathbb{Z})$ such that $[S_f] = (S_f)B$. In [1], Bourque and Ligh showed that if S is factor closed then (S)|[S]. The set S is said to be factor closed if it contains every positive divisor of x for any $x \in S$. Hong [4] showed that such factorization is no longer true in general if S is gcd-closed. The set S is said to be gcd-closed if $(x_i, x_j) \in S$ for all $1 \leq i, j \leq n$. In this frame, many results on divisibility among GCD, LCM and related matrices are published in the literature. In this talk, we summarize these results and open problems.

Keywords. GCD matrix, LCM matrix, divisibility, gcd-closed set *MSC 2010.* 11C20, 11A05.

References

- [1] K. Bourque, S. Ligh, On GCD and LCM matrices, Linear Algebra Appl. 174, 1992, 65-74.
- [2] K. Bourque, S. Ligh, Matrices associated with multiplicative functions, Linear Algebra Appl. 216, 1995, 267-275.
- [3] W. Feng, S. Hong, J. Zhao, Divisibility properties of power LCM matrices by power GCD matrices on gcd-closed sets, Discrete Math. 309, 2009, 2627-2639.
- [4] S. Hong, On the factorization of LCM matrices on gcd-closed sets, Linear Algebra Appl. 345, 2002, 225-233.
- [5] S. Hong, Faztorization of matrices associated with classes of arithmetical functions, Colloq. Math. 98, 2003, 113-123.
- [6] S. Hong, Nonsingularity of matrices associated with classes of arithmetical functions on lcmclosed sets, Linear Algebra Appl. 416, 2006, 124-134.
- [7] S. Hong, Divisibility properties of power GCD matrices and power LCM matrices, Linear Algebra Appl. 428, 2008, 1001-1008.
- [8] S. Hong, J. Zhao, Y. Yin, Divisibility properties of Smith matrices, Acta Arithmetica 132, 2008, 161-175.
- M. Li, Q. Tan, Divisibility of matrices associated with multiplicative functions, Discrete Math. 311, 2011, 2276-2282.
- [10] Q. Tan, Notes on non-divisibility of determinants of power GCD matrices and power LCM matrices, Southeast Asian Bull. Math. 33, 2009, 563-567.

- [11] Q. Tan, Z. Lin, Divisibility of determinants of power gcd matrices and power lcm matrices on finitely many quasi-coprime divisor chains, Appl. Math. Comput. 217, 2010, 3910-3915.
- [12] Q. Tan, Divisibility among power GCD matrices and among power LCM matrices on two coprime divisor chains, Linear Multilinear Algebra 58, 2010, 659-671.
- [13] Q. Tan, Z. Lin, L. Liu, Divisibility among power GCD matrices and among power LCM matrices on two coprime divisor chains II, Linear Multilinear Algebra 59, 2011, 969-983.
- [14] Z Lin, Q. Tan, Determinants of Smith matrices on three coprime divisor chains and divisibility, Linear Multilinear Algebra 60, 2012, 475-486.
- [15] Q. Tan, M. Li, Divisibility among power GCD matrices and among power LCM matrices on finitely many coprime divisor chains, Linear Algebra Appl. 438, 2013, 1454-1466.
- [16] Q. Tan, M. Luo, Z. Lin, Determinants and divisibility of power GCD and power LCM matrices on finitely many coprime divisor chains, Appl. Math. Comput. 219, 2013, 8112-8120.
- [17] J. Xu, M. Li, Divisibility among power GCD matrices and among power LCM matrices on three coprime divisor chains, Linear and Multilinear Algebra 59, 2011, 1-16.
- [18] J. Zhao, S. Hong, Q. Liao, K. P. Shum, On the divisibility of power LCM matrices by power GCD matrices, Czechoslovak Math. J. 57, 2007, 115-125.
- [19] J. Zhao, Divisibility of power LCM matrices by power GCD matrices on gcd-closed sets, Linear and Multilinear Algebra 62, 2014, 735-748.

DEPARTMENT OF MATHEMATICS, GAZI UNIVERSITY, 06500 TEKNIKOKULLAR, ANKARA E-mail address: ealtinisik@gazi.edu.tr E-mail address: yildizm78@mynet.com